Внешняя неуравновешенность и уравновешивание двигателей

Статьи » Судовые двигатели внутреннего сгорания » Внешняя неуравновешенность и уравновешивание двигателей

Страница 3

Главный вектор неуравновешенных вращающихся масс, равный геометрической сумме векторов , , и

будет вращаться вместе с коленчатым валом с угловой скоростью ω. При любом положении коленвала проекциями этого вектора на вертикальную и горизонтальную ось будут RrВ и RrГ. Следовательно, численное значение главного вектора неуравновешенных вращающихся масс можно определить из выражения

Если определены проекции главного вектора Rr при положении коленчатого вала, кргда его первый кривошип находится в своей ВМТ, то угол между главным вектором и вертикальной осью φr

Справедливо и обратное: для произвольного положения коленчатого вала, определяемого углом αi, проекции главного вектора на вертикальную и горизонтальную оси можно найти по уравнениям

RrВ = Rr cos (α1 +φr) RrГ = Rr sin (α1 +φr).

Несколько иначе обстоит дело с неуравновешенными моментами от сил инерции вращающихся масс. Как известно, момент P·a сил , действующих в плоскости ЕЕ, можно представить вектором , перпендикулярным к плоскости ЕЕ. Длина вектора соответствует в выбранном масштабе величине момента. Вектор направлен в ту сторону, откуда пара сил представляется действующей по часовой стрелке. В соответствии с этим вектор момента от силы PriВ направлен горизонтально, а вектор момента от силы PriГ - вертикально.

Рис. 8.16 – Вектор изображения момента пары сил

Рис. 8.17 – Схема моментов неуравновешенных вращающихся масс цилиндра

Момент от силы Pri

.

Соответственно

.

Обозначим через ψr угол между результирующим вектором момента Mr и горизонтальной осью. Для главного вектора сил инерции вращающихся масс по аналогии получим

,

;

Таким образом

,

откуда непосредственно следует

Mr Г = Мr cos (α1 + ψr);

Mr В = Мr sin (α1 + ψr),

где ψr - начальная фаза момента.

В дальнейшем будем определять ψr для положения коленчатого вала при α1 = 0.

Для сил и моментов сил инерции ПДМ первого и второго порядков получим соответственно:

; ;

; ;

R1Д = RI cos (α1 + φ1); M1Д = MI cos (α1 + φ1);

; ;

; ;

R1IД = RII cos (α1 + φ1I); M1IД = MII cos (α1 + φ1I).

Лекция 16. 8.4.2. Определение неуравновешенных сил и моментов от системы сил инерции вращающихся масс

Неуравновешенные силы и моменты принято определять при положении коленчатого вала, когда кривошип первого цилиндра находится в ВМТ.

Страницы: 1 2 3 4 5 6 7 8

Рекомендуем также:

Расчетные зависимости для кинематического исследования механизма
К кинематическим характеристикам рычажных механизмов относятся траектории точек, координаты, перемещения, скорости и ускорения точек и звеньев, а также функции положения, аналоги (или КПФ) скоростей и ускорений точек и звеньев механизма. Значение кинематических параметров механизмов необходимо для ...

Посадка
Первое, что должен сделать водитель, садясь за руль нового для него автомобиля, это обеспечить рациональную посадку регулировкой положения сиденья и его спинки. Рациональная посадка, характеризуется устойчивым положением корпуса; освобождением в основном конечностей от удержания позы для выполнен ...

Расчет времени и пути разгона автомобиля
Время и путь разгона автомобиля до максимальной скорости являются самыми распространенными и наглядными характеристиками динамичности автомобиля. Их определение производят графоаналитическим способом с использованием графика ускорений автомобиля. При проведении расчетов полагаем, что разгон автомо ...

Навигация

Copyright © 2021 - All Rights Reserved - www.transportpart.ru