Динамика кривошипно-шатунного механизма

Статьи » Судовые двигатели внутреннего сгорания » Динамика кривошипно-шатунного механизма

Страница 2

; (8.5)

. (8.6)

В результате приведённые массы кривошипа примут вид

; , (8.7)

где - масса шатунной шейки;

- масса рамовой шейки.

Рис. 8.2 – Кривошип и его динамическая модель

Приведение масс противовеса

Динамическая модель противовеса аналогична модели кривошипа.

Рис.8.3 – Противовес и его динамическая модель

Приведённая неуравновешенная масса противовеса

, (8.8)

где - фактическая масса противовеса;

c1 – расстояние от центра масс противовеса до оси вращения коленвала;

R – радиус кривошипа.

Приведённая масса противовеса считается расположенной в точке на расстоянии R в сторону центра масс относительно оси коленвала.

Динамическая модель КШМ

Динамическую модель КШМ в целом составляют на основе моделей его звеньев, при этом массы сосредоточенные в одноимённых точках суммируют.

1. Приведённая поступательно-движущаяся масса, сосредоточенная в центре поршневого пальца или поперечины крейцкопфа

MS = MП + МШТ + МКР + МШS, (8.9)

где MП – масса комплекта поршня;

МШТ – масса штока;

МКР – масса крейцкопфа;

МШS – ПДМ части шатуна.

Приведённая неуравновешенная вращающаяся масса, сосредоточенная в центре шатунной шейки

MR = МК + МШR, (8.10)

где MК – неуравновешенная вращающаяся часть массы колена;

МШR – НВМ части шатуна;

Обычно для удобства расчётов абсолютные массы заменяют относительными

; , (8.11)

где Fп – площадь поршня.

Дело в том, что силы инерции суммируются с давлением газов и в случае использования масс в относительной форме получается одинаковая размерность. Кроме того, для однотипных дизелей значения mS и mR изменяются в узких пределах и их значения приводятся в специальной технической литературе.

В случае необходимости учёта сил тяжести деталей, они определяются по формулам

gR = mRg;

gS = mSg,

где g – ускорение свободного падения, g = 9,81 м/с2.

Лекция 13. 8.2. Силы инерции одного цилиндра

При движении КШМ возникают силы инерции от поступательно-движущихся и вращающихся масс КШМ.

Силы инерции ПДМ (отнесённые к FП)

судовой двигатель термодинамический поршневый

qS = -mSJ. (8.12)

Знак "-" потому что направление сил инерции обычно обратно направлено вектору ускорения.

Зная, что , получим

. (8.13)

В ВМТ (α = 0) .

В НМТ (α = 180) .

Обозначим амплитуды сил инерции первого и второго порядков

PI = - mSRω2 и PII = - mSλ Rω2

Получим

qS = PIcosα+ PIIcos2α, (8.14)

где PIcosα – сила инерции первого порядка ПДМ;

PIIcos2α – сила инерции второго порядка ПДМ.

Сила инерции qS приложена к поршневому пальцу и направлена по оси рабочего цилиндра, её величина и знак зависят от α.

Силу инерции первого порядка ПДМ PIcosα можно представить как проекцию на ось цилиндра некоторого вектора , направленного по кривошипу от центра коленвала и действующего так, будто он представляет собой центробежную силу инерции массы mS, расположенной в центре шатунной шейки.

Рис. 8.4 – Векторное изображение сил инерции ПДМ первого порядка

Проекция вектора на горизонтальную ось представляет фиктивную величину PIsinα, так как в действительности такой величины не существует. В соответствии с этим и сам вектор , имеющий сходство с центробежной силой также не существует и поэтому носит название фиктивной силы инерции первого порядка.

Введение в рассмотрение фиктивных сил инерции, имеющих только одну реальную вертикальную проекцию, является условным приемом, позволяющим упростить расчёты ПДМ.

Вектор фиктивной силы инерции первого порядка можно представить как сумму двух составляющих: действительной силы PIcosα, направленной по оси цилиндра и фиктивной силы PIsinα, направленной перпендикулярно к ней.

Страницы: 1 2 3 4 5

Рекомендуем также:

Управление судном при прохождении шлюзов
Движение по водохранилищам сопряжено с необходимостью шлюзования. Управление судном в подходном канале шлюза и в самом шлюзе имеет свои особенности, связанные с резким увеличением стесненности живого сечения подходного канала и шлюза корпусом судна. Движение судна при проходе через шлюз можно раз ...

Бесчелюстная тележка
Это шкворневые трехосные тележки, имеющие индивидуальный привод каждой колесной пары от тягового электродвигателя, одноступенчатое рессорное подвешивание, опорно-осевую подвеску тягового электродвигателя и точечное опирание через четыре роликовые опоры рамы тепловоза на каждую тележку. Отличитель ...

Передняя ось и рулевые тяги
Передняя ось автомобиля воспринимает вертикальную нагрузку, а также силы и момент, возникающие при торможении и повороте автомобиля. Колеса передней оси являются управляемыми. Основной несущей деталью, через которую с помощью рессор передаются указанные силы на раму автомобиля, является балка пер ...

Навигация

Copyright © 2020 - All Rights Reserved - www.transportpart.ru