Передача мощности на гребной винт

По способу передачи мощности от двигателя к гребному винту энергетические установки можно разделить на три основные группы:

1.установки с непосредственным (прямым) соединением главного двигателя с гребным винтом фиксированного или регулируемого шага;

2.установки с зубчатой редукторной передачей;

3.установки с электрической передачей.

На рис. представлены одновальные схемы указанных передач.

Прямая передача (рис. а). Главный двигатель 1 с помощью валопровода 2 жестко соединен с гребным винтом 3. В прямой передаче потери в системе двигатель—гребной винт будут минимальными. Это наиболее простая и надежная установка.

Частота вращения главного двигателя обычно не превышает 300 об/мин, что объясняется стремлением повысить проиульснвный КПД гребного винта. Малая частота вращения главного двигателя объективно обусловливает надежность его работы, удобство эксплуатации, большой моторесурс и малый удельный расход топлива.

Наряду с этим применение на судне малооборотного двигателя приводит к некоторому увеличению высоты машинного отделения и массы энергетической установки, а также ухудшает маневренные свойства судна, если оно не имеет специальных подруливающих устройств.

Прямая передача получила широкое распространение в промысловом флоте.

Редукторная передача (рис. б). Чаще всего ее комплектуют из двух главных двигателей, которые связаны через эластичные муфты 4 и понижающую зубчатую передачу 5 с общим гребным валом.

Развитию дизель-редукторных установок способствовало появление мощных среднеоборотных четырехтактных дизелей, применение которых на судах имеет ряд преимуществ, в частности, позволяет производить отбор мощности на работу вспомогательных установок (механизмов) в рабочем (промысловом) режиме, а также снизить массу и габарит энергетических установок.

Частота вращения гребного винта, независимо от номинальных оборотов двигателя, при наличии редуктора может быть установлена с таким расчетом, чтобы обеспечить оптимальные условия работы движителя.

Выигрыш в КПД гребного винта частично компенсирует потери мощности в зубчатой передаче (5—б %). Дизель-редукторная установка с двумя (или более) двигателями обладает повышенной живучестью и маневренностью по сравнению с прямой передачей. Кроме того, при работе на частичных нагрузках, связанных со значительным увеличением удельного расхода топлива, часть двигателей может быть выключена.

Остальные двигатели при этом продолжают работать с большей нагрузкой и при меньшем удельном расходе топлива. Вместе с тем редукторным передачам по сравнению с прямыми присущи и недостатки, к которым следует отнести конструктивное усложнение установки, ее более низкий КПД вследствие потерь в редукторе и муфтах, меньший моторесурс двигателей и больший удельный расход топлива. Дизель-редукторные передачи получили самое широкое распространение на транспортных рефрижераторах промыслового флота.

Электрическая передача (рис. в). Она состоит из гребного электродвигателя 8, электропроводников 7 и генератора 6, жестко соединенного с главным двигателем. Дизель-генераторов, как правило, бывает несколько, от двух до шести.

Из схемы видно, что происходит двойная трансформация энергии (механической в электрическую, а затем электрической в механическую), сопровождающаяся увеличением потерь в передаче и соответственным снижением ее КПД.

С другой стороны, отсутствие жесткой механической связи между первичным двигателем (дизелями) и гребным винтом, а также наличие нескольких главных дизель-генераторов дает ряд существенных преимуществ: возможность применения при наличии винта фиксированного шага (ВФШ) нереверсивных дизелей, так как реверс осуществляется гребным электродвигателем; высокие маневренные качества судна благодаря широкому диапазону частоты вращения гребного электродвигателя.

Рекомендуем также:

Элементы геометрии гребного винта
Основными геометрическими характеристиками винта являются: - диаметр винта D - диаметр окружности, описываемой наиболее удалёнными от оси точками лопастей: у крупнотоннажных судов диаметр доходит до 10м; - диаметр ступицы винта d- (обычно у монолитных винтов d= 0’2D); - шаг винта Н- расстояние, ...

Балансировка роторной системы
В данной работе экспериментально исследуются колебания роторной системы, и по полученным экспериментальным данным производится балансировка одного из дисков лабораторной установки. При этом производится расчет корректировочной массы, и угол на который необходимо установить корректировочную массу. ...

Уравновешивание двигателя
Силы и моменты, действующие в КШМ, непрерывно изменяются и, если они неуравновешенны, вызывают сотрясение и вибрацию двигателя, передаваемое раме автомобиля. Условия уравновешенности двигателя с любым числом цилиндров: а) результирующие силы инерции первого порядка и их моменты равны нулю: и ...

Навигация

Copyright © 2025 - All Rights Reserved - www.transportpart.ru