Определение тормозного пути, замедлений и времени торможения

Статьи » Проектирование тормозной схемы электровоза » Определение тормозного пути, замедлений и времени торможения

Страница 1

Полный расчетный тормозной путь определяется по формуле

Sт = Sп + Sд ,(11.1)

где Sп – подготовленный (предтормозной путь);

Sд – действительный тормозной путь.

Подготовительный путь, м, определяется

Sп = VH·tп ,(11.2)

где VH – скорость движения в начале торможения, м/с;

tп – время подготовки тормозов к действию, с.

Время подготовки автотормозов, с, определяется следующим образом.

tп = 10 + 15 (± i)/bт ,(11.3)

где i - уклон пути, i = - 7‰, знак ''-'' – означает, что расчет ведется на спуске;

bт – удельная тормозная сила, Н/кН.

bт = 1000·φкр·δр ,(11.4)

где φкр – расчетный коэффициент трения тормозных колодок;

δр - расчетный коэффициент силы нажатия тормозных колодок поезда.

Расчетный коэффициент трения тормозных колодок

φкр = 0,27·(3,6V + 100)/(18V + 100)(11.5)

Действительный тормозной путь, м, определяется по формуле

где к – число интервалов скоростей;

ω – основное удельное сопротивление движению, Н/кН, bт и ω рассчитываются при средней скорости интервала, интервал 2 м/с.

Vср = (VH + VH+1)/2,(11.6)

Основное удельное сопротивление определяем для грузовых вагонов

ω = 0,7 + (3 + 0,36V + 0,0324V2)/0,1q ,(11.7)

где q – осевая нагрузка, кН, q = 245 кН;

V – средняя скорость в интервале, м/с

Расчеты сводим в таблицу 11.3

Замедление движения поезда определяется по формуле

аi = (V2н – V2н+1)/(2·ΔSд) ,(11.8)

Время торможения определяется по формуле

t = tп + Σti ,(11.9)

где ti – время торможения в расчетном интервале, с.

ti = (Vн – Vн+1)/ai ,(11.10)

Расчеты замедлений движения поезда и времени торможения представлены в таблице 11.1.

Таблица 11.1 – Расчет тормозного пути

Vн, м/с

φкр

bт, Н/кН

tн, с

Sп, м

Vср, м/с

φкр

bт, Н/кН

ω, Н/кН

Sд, м

ΔSд, м

Sт, м

22,00

0,10

41,95

4,50

98,93

23,00

0,10

41,29

1,86

125,48

15,64

224,41

20,00

0,10

43,41

4,58

91,63

21,00

0,10

42,65

1,71

109,83

15,23

201,46

18,00

0,10

45,13

4,67

84,12

19,00

0,10

44,23

1,58

94,61

14,71

178,73

16,00

0,11

47,16

4,77

76,38

17,00

0,11

46,10

1,45

79,90

14,08

156,27

14,00

0,12

49,61

4,88

68,37

15,00

0,11

48,32

1,34

65,82

13,33

134,18

12,00

0,12

52,61

5,00

60,05

13,00

0,12

51,03

1,24

52,49

12,43

112,54

10,00

0,13

56,39

5,14

51,38

11,00

0,13

54,39

1,14

40,06

11,38

91,44

8,00

0,14

61,29

5,29

42,29

9,00

0,14

58,67

1,06

28,67

10,15

70,97

6,00

0,16

67,87

5,45

32,72

7,00

0,15

64,32

0,99

18,52

8,71

51,24

4,00

0,18

77,22

5,64

22,56

5,00

0,17

72,10

0,93

9,81

7,02

32,37

2,00

0,21

91,51

5,85

11,71

3,00

0,19

83,53

0,88

2,79

1,79

14,50

0

0,27

116,10

6,10

-

1,00

0,24

101,93

0,84

1,00

1,00

1,00

Страницы: 1 2

Рекомендуем также:

Расчет несущей части автомобиля
Алгоритм расчета несущей части автомобиля Предельные динамические нагрузки характеризуются коэффициентом динамической нагрузки: где Рд - динамическая нагрузка на раму, Рст - статическая нагрузка. Значения коэффициентов динамической нагрузки: - для грузовых автомобилей: 2 .2,5; - для автобу ...

Расчет трудоемкости работ ДСМ и СМО
Трудоемкость выполнения рассчитанных обслуживаний и ремонтов для каждого вида машин производится по формуле: (12) где - количество соответствующих видов обслуживания (ремонтов) для каждой машины. - трудоемкость выполнения соответствующего вида ремонта или технического обслуживания в ч.часах ( ...

Расчёт на смятие проушин
Проушины будем рассчитывать по допускаемым напряжениям на смятие. Необходимо, чтобы Прочность обеспечивается. Расчёт на смятие стержня Прочность обеспечивается. Расчёт сварки проушины Сварку будем рассчитывать по допускаемым напряжениям. Рисунок 17. – Схема для расчёта св ...

Навигация

Copyright © 2025 - All Rights Reserved - www.transportpart.ru