Принципы АЭ-контроля шлифования

Страница 1

Рабочие контакты единичных режущих зерен шлифовального круга с по­верхностью обрабатываемой детали генерируют сигналы АЭ. Энергия акусти­ческого сигнала зависит от количества единичных врезаний, т. е. связана с ре­альной производительностью обработки. Это дает возможность по изменениям сигнала АЭ судить о выходных характеристиках шлифования, связанных с мгновенным объемом металла (режущей способностью круга, некруглостью, волнистостью детали).

Аппаратура регистрации сигнала АЭ при шлифовании включает в себя датчик (пьезопреобразователь), преобразующий механические колебания в

электрический сигнал; предварительный усилитель; узкополосный фильтр с центральной частотой,/; детектирующее звено; самописец. В настоящей работе роль предусилителя, фильтра и детектора выполняет селективный микровольт­метр. На самописце записывается интенсивность узкополосной составляющей сигнала I/t).

В условиях круглого врезного шлифования (при вращении детали) реги­страция сигнала (рис. 2.1) производится путем поджима датчика 3 к поверхно­сти детали 2. Для уменьшения трения между датчиком и деталью используется тифлоновая пробка. Благодаря кулисному механизму поджима 4 уменьшение диаметра детали

d = do-2tp (2.1)

где d0 - диаметр заготовки, мм;

?р - припуск, мм,

не сказывается на плотности контакта датчика с обрабатываемой поверх­ностью.

Рис. 2.1. Крепление пьезопреобразователя в рабочей зоне

Цикл круглого врезного шлифования (рис. 2.2, а) предусматривает три режима: черновая подача (FBp = 3 - 6 мм/мин); чистовая подача (Квр = 1 - 0,5 мм/мин); выхаживание (Квр = 0).

Такое дифференцирование цикла позволяет обеспечить, с одной стороны, высокую производительность обработки, с другой стороны,- требуемое качество шлифуемой поверхности.

Акустограмма (рис. 2.2, б)

0,5

vвр.чер

vвр.чист

vвр=0

Рис. 2.2. Цикл обработки (а) и соответствующая акустограмма АЭ (б)

При этом характер колебаний / в процессе обработки позволяет выделить переходные зоны, связанные с выходом оборудования на установившийся ре­жим. Протяженность переходных зон зависит от режущей способности круга. Чем острее зерна абразива, тем быстрее выбирается натяг технологической сис­темы и тем короче переходные зоны на акустограмме I/t).

Таким образом, задавая математически функцию I/t) в областях переход­ных зон, можно количественно оценить текущую режущую способность круга. Наиболее удобен для аппроксимации режим выхаживания. Его можно прибли­женно промоделировать выражением:

(2.3)

где р- постоянная времени, количественно отражающая крутизну падания ин­тенсивности сигнала If, т. е. показатель Р может использоваться для оценки те­кущей режущей способности инструмента.

Проведя предварительные эксперименты и получив предварительную для максимально допустимого затупления круга величину р, можно регламентиро­вать рациональную длительность периода правки.

Магнитные методы контроля основаны на обнаружении магнитного по­тока рассеяния, создаваемого различными дефектами в намагниченных издели­ях из ферромагнитных материалов. Магнитный поток, распространяясь по из­делию и встречая на своем пути дефект, огибает его вследствие того, что маг­нитная проницаемость дефекта значительно (в 1000 раз) больше магнитной проницаемости основного материала. В результате этого часть магнитно-силовых линий вытесняется дефектом на поверхность, образуя местный маг­нитный поток рассеяния (рис. 3.1). Дефекты, которые вызывают возмущение в распределении силовых линий магнитного потока без образования местного потока рассеяния, не могут быть обнаружены методами магнитной дефектоско­пии. Возмущение потока происходит тем сильнее, чем большее препятствие представляет собой дефект. Так, если дефект'расположен вдоль направления магнитных силовых линий, то возмущение магнитного потока невелико, в то время как тот же дефект, расположенный перпендикулярно или наклонно на­правлению магнитного потока, создает значительный поток рассеяния.

В зависимости от способа регистрации магнитного потока рассеяния маг­нитные методы контроля подразделяют на магнитопорошковый, магнитогра­фический, феррозондовый.

Страницы: 1 2 3 4

Рекомендуем также:

Установка комплекса КТСМ
Комплекс КТСМ-01 может устанавливаться как на существующих установках аппаратуры ПОНАБ-3, так и на вновь оборудуемых линейных постах контроля. При монтаже комплекса на вновь оборудуемом линейном посту контроля, место размещения перегонного оборудования, помещение, оборудование электроснабжения, ли ...

Разработка структуры системы автоматического контроля подвижного состава на участке Гомель – Калинковичи
Анализ существующих систем автоматического контроля подвижного состава показывает, что основным направлением развития этих систем является построение единой централизованной сети контроля подвижного состава с микропроцессорным управлением. Передача данных в таких сетях осуществляется по стандартны ...

Общий принцип работы и конструкция
Зависимость силы тяги от скорости движения является основной характеристикой тепловоза и называется тяговой характеристикой. Для случая максимального использования мощности локомотива график такой характеристики представляет собой гиперболу, в каждой точке которой произведение силы тяги на скорост ...

Навигация

Copyright © 2019 - All Rights Reserved - www.transportpart.ru