Принципы АЭ-контроля шлифования

Страница 1

Рабочие контакты единичных режущих зерен шлифовального круга с по­верхностью обрабатываемой детали генерируют сигналы АЭ. Энергия акусти­ческого сигнала зависит от количества единичных врезаний, т. е. связана с ре­альной производительностью обработки. Это дает возможность по изменениям сигнала АЭ судить о выходных характеристиках шлифования, связанных с мгновенным объемом металла (режущей способностью круга, некруглостью, волнистостью детали).

Аппаратура регистрации сигнала АЭ при шлифовании включает в себя датчик (пьезопреобразователь), преобразующий механические колебания в

электрический сигнал; предварительный усилитель; узкополосный фильтр с центральной частотой,/; детектирующее звено; самописец. В настоящей работе роль предусилителя, фильтра и детектора выполняет селективный микровольт­метр. На самописце записывается интенсивность узкополосной составляющей сигнала I/t).

В условиях круглого врезного шлифования (при вращении детали) реги­страция сигнала (рис. 2.1) производится путем поджима датчика 3 к поверхно­сти детали 2. Для уменьшения трения между датчиком и деталью используется тифлоновая пробка. Благодаря кулисному механизму поджима 4 уменьшение диаметра детали

d = do-2tp (2.1)

где d0 - диаметр заготовки, мм;

?р - припуск, мм,

не сказывается на плотности контакта датчика с обрабатываемой поверх­ностью.

Рис. 2.1. Крепление пьезопреобразователя в рабочей зоне

Цикл круглого врезного шлифования (рис. 2.2, а) предусматривает три режима: черновая подача (FBp = 3 - 6 мм/мин); чистовая подача (Квр = 1 - 0,5 мм/мин); выхаживание (Квр = 0).

Такое дифференцирование цикла позволяет обеспечить, с одной стороны, высокую производительность обработки, с другой стороны,- требуемое качество шлифуемой поверхности.

Акустограмма (рис. 2.2, б)

0,5

vвр.чер

vвр.чист

vвр=0

Рис. 2.2. Цикл обработки (а) и соответствующая акустограмма АЭ (б)

При этом характер колебаний / в процессе обработки позволяет выделить переходные зоны, связанные с выходом оборудования на установившийся ре­жим. Протяженность переходных зон зависит от режущей способности круга. Чем острее зерна абразива, тем быстрее выбирается натяг технологической сис­темы и тем короче переходные зоны на акустограмме I/t).

Таким образом, задавая математически функцию I/t) в областях переход­ных зон, можно количественно оценить текущую режущую способность круга. Наиболее удобен для аппроксимации режим выхаживания. Его можно прибли­женно промоделировать выражением:

(2.3)

где р- постоянная времени, количественно отражающая крутизну падания ин­тенсивности сигнала If, т. е. показатель Р может использоваться для оценки те­кущей режущей способности инструмента.

Проведя предварительные эксперименты и получив предварительную для максимально допустимого затупления круга величину р, можно регламентиро­вать рациональную длительность периода правки.

Магнитные методы контроля основаны на обнаружении магнитного по­тока рассеяния, создаваемого различными дефектами в намагниченных издели­ях из ферромагнитных материалов. Магнитный поток, распространяясь по из­делию и встречая на своем пути дефект, огибает его вследствие того, что маг­нитная проницаемость дефекта значительно (в 1000 раз) больше магнитной проницаемости основного материала. В результате этого часть магнитно-силовых линий вытесняется дефектом на поверхность, образуя местный маг­нитный поток рассеяния (рис. 3.1). Дефекты, которые вызывают возмущение в распределении силовых линий магнитного потока без образования местного потока рассеяния, не могут быть обнаружены методами магнитной дефектоско­пии. Возмущение потока происходит тем сильнее, чем большее препятствие представляет собой дефект. Так, если дефект'расположен вдоль направления магнитных силовых линий, то возмущение магнитного потока невелико, в то время как тот же дефект, расположенный перпендикулярно или наклонно на­правлению магнитного потока, создает значительный поток рассеяния.

В зависимости от способа регистрации магнитного потока рассеяния маг­нитные методы контроля подразделяют на магнитопорошковый, магнитогра­фический, феррозондовый.

Страницы: 1 2 3 4

Рекомендуем также:

Навигация

Copyright © 2024 - All Rights Reserved - www.transportpart.ru