В теории проектирования дорог предложено несколько схем видимости по условиям движения автомобилей и расположению автомобилей и препятствий на дороге. Принципиально различают следующие группы:
1. Схемы, предусматривающие остановку автомобиля перед препятствием или встречным автомобилем.
Расчетное расстояние видимости поверхности дороги находится из выражения:
. (19)
гдеV – расчетная скорость движения по проектируемой автомобильной дороги;
Кэ – коэффициент, учитывающий эффективность тормозов (для легкового автомобиля принимается К=1,3; для грузовых и автобусов – К=1,85);
φ1 – коэффициент продольного сцепления, принимается равным 0,50;
l0 – зазор безопасности, принимаемый равным 5 – 10 м.
Расчетное расстояние видимости встречного автомобиля находится по формуле:
. (20)
2. Схемы, исходящие из объезда автомобилем препятствия или обгона попутного автомобиля с заездом на смежную полосу движения.
Расстояние видимости из условия обгона:
. (21)
гдеV1 и V2 – соответственного скорости обгоняющего и обгоняемого автомобиля. Для расчетов принимаются расчетные скорости для легкового и грузового автомобилей при принятой технической категории;
lа – средняя длина автомобиля, м, принимается 5 – 7 м.
На пересечениях дорог в городских условиях необходимо обеспечение достаточной боковой видимости придорожной полосы.
Минимальное необходимое расстояние боковой видимости:
, (22)
гдеVп – скорость движения пешехода или транспортного средства по пересекающей дороги, км/ч, для пешехода – 7 – 10 км/ч, для транспортного средства – 20 – 30 км/ч.
Расстояния боковой видимости на пересечении дорог сравнивают с расчетными, которые определяют с учетом скоростей движения на пересекающихся дорогах, продолжительности ориентирования водителя и времени его реакции:
, (23)
гдеV – скорость движения;
tор – продолжительность ориентирования водителя, с;
tр – время реакции водителя, равное 1,5 с;
Кэ – характеристика эксплуатационного состояния тормозной системы автомобиля (принимается не менее 1,4);
j – коэффициент продольного сцепления;
i – продольный уклон (при спуске – с минусом);
D – расстояние от остановившегося автомобиля до кромки проезжей части пересекаемой дороги: D = 5 м.
Продолжительность ориентирования рассчитывают с учетом местных условий движения:
, (24)
гдеto – наименьшая продолжительность ориентирования в оптимальных условиях (для автомобильных дорог to = 1,4 с, для населенных пунктов 1,8 с);
К1 – коэффициент, учитывающий наличие стоящих на обочинах пересекаемой дороги автомобилей (если остановка или стоянка автомобилей в пределах пересечений разрешена, то К1=0,32; при запрещении остановки К1=0);
К2 – коэффициент, учитывающий плотность движения на пересекаемой дороге:
Интенсивность движения по пересекаемой дороге, авт./ч |
до 50 |
75 |
200 |
500 |
К2 |
0,15 |
0,22 |
0,35 |
0,53 |
К3 – коэффициент, учитывающий интенсивность движения на дороге, с которой определяется расстояние боковой видимости:
Интенсивность движения, aвт./ч |
до 30 |
50 |
100 |
300 |
К3 |
0 |
0,12 |
0,20 |
0,22 |
Рекомендуем также:
Расчет площадей
производственно-складских помещений
Площади зон ТО, ТР и диагностики определяем в зависимости от числа постов в зоне (Хi), площади, занимаемой автомобилем в плане (fa), и коэффициента плотности расстановки постов (Кп).
(2.53)
Площадь горизонтальной проекции автомобиля равна 18,4 м2. Принимая Кп= 5 получим:
FЗ ТР = 18,4·5 ...
Определение общей площади роботизированного складского комплекса
Расчеты складской площади производится по формуле
Sобщ = Sосн + Sсл + Sконстр ,
где Sосн – основная площадь склада;
Sсл – служебная площадь (конструктора, бытовые помещения);
Sконстр - конструктивная площадь (лестничные клетки, лифты, внутренние стены и т.п.);
Sосн = Sхр + Sтехн + Sвсп + Sрез ...
Определение вероятного значения взлетной массы
самолета
Определить величину взлетной массы самолета нулевого приближения можно по формуле:
,
где = 0,3 — относительная масса конструкции;
= 0,09 — относительная масса силовой установки;
= 0,33— относительная масса топливной системы;
= 0,07 — относительная масса оборудования и управления.
кг. ...