Расчет тормозного управления

Страница 1

Алгоритм расчета тормозного управления

Коэффициент тормозной эффективности - это отношение тормозного момента, создаваемого тормозным механизмом, к условному приводному моменту:

где Мтор - тормозной момент, H*м;

Р - сумма приводных сил, H;

Rтор - радиус приложения результирующей сил трения, м.

Стабильность. Этот критерий характеризует зависимость коэффициента

тормозной эффективности от изменения коэффициента трения.

Лучшей стабильностью обладают тормозные механизмы, характеризуемые линейной зависимостью. Уравновешанными являются тормозные механизмы, в которых силы трения не создают нагрузки на подшипники колеса.

Установившиеся замедление Jуст определяется:

где к - коэффициент сцепления колеса с дорогой;

G - вес автомобиля, H.

Минимальный тормозной путь S определяется:

где V - начальная скорость автомобиля, м/c;

tc - время запаздывания тормозов, c;

tn - время наростания замедления,c;

g - ускорение свободного падения, m/c^2;

По ГОСТ 22859-97,S для легковых и грузовых автомобилей соответственно 7,2м, 25м.

Суммарная тормозная сила P, (H) определяется:

Тормозной момент Мт, (H*м) определяется:

где Vh - рабочий объем двигателя, л

A,B - коэффициенты корректировки;

w - частота вращения коленвала, рад/с.

Обоснование выбора исходных данных

Число тормозных механизмов автомобиля, динамический радиус колеса, радиус тормозного барабана, толщина стенки барабана, ширина фрикционных накладок передних колёс, ширина фрикционных накладок задних колёс, суммарная площадь фрикционных накладок, диаметр рабочего тормозного гидроцилиндра, полный вес автомобиля, масса автомобиля, приходящаяся на тормозящую ось выбраны согласно рекомендациям в [4].

Максимальный тормозной момент передних колёс, максимальный тормозной момент задних колёс рассчитаны согласно рекомендациям в [2].

Угол охвата фрикционных накладок переднего моста, угол охвата фрикционных накладок заднего моста, расчётный коэффициент трения, скорость движения автомобиля при торможении выбраны согласно рекомендациям в [2].

Нижний предел максимального замедления, расстояние от линии действия разжимных сил до опоры, расстояние от центра барабана до оси опоры, углы несимметричности накладок передних колёс, углы несимметричности накладок задних колёс, масса барабана, удельная теплоёмкость чугуна выбраны согласно рекомендациям в [3].

Проведение расчета

Проектировочный расчет

Таблица 21- Исходные данные для проектировочного расчета тормозного управления

Полный вес автомобиля, Н

16500

Число тормозных механизмов автомобиля

4

Скорость автомобиля, м/с

8,5

Динамический радиус колеса, м

0,33

Нижний предел максимального замедления, м/с^2

8

Расстояние от линии действия разжимных сил до опоры, м

0,1325

Радиус тормозного барабана, м

0,1443

Толщина стенки барабана, м

0,021

Расстояние от центра барабана до оси опоры, м

0,047

Углы охвата фрикционных накладок передних колёс, град

100

Углы охвата фрикционных накладок задних колёс, град

100

Углы несимметричности накладок передних колёс, град

30

Углы несимметричности накладок задних колёс, град

30

Ширина фрикционных накладок передних колёс, м

0,1

Ширина фрикционных накладок задних колёс, м

0,1

Суммарная площадь фрикционных накладок, м^2

0,191

Плечо приложения разжимных сил, м

0

КПД кулачкового привода

0

Эффективная площадь диафрагмы тормозной камеры или цилиндра, м^2

0

Длина приводного рычага кулачкового вала, м

0

Диаметр рабочего тормозного гидро-, пневмо- цилиндра, м

0,0248

Максимальный тормозной момент передних колёс, Н*м

25,038

Максимальный тормозной момент задних колёс, Н*м

25,038

Страницы: 1 2

Рекомендуем также:

Выбор режима работы производственных подразделений
Для выбора наиболее рационального режима труда и отдыха производственного персонала на объекте проектирования предлагается построить совмещенный график работы авто на линии и производственных подразделений технической службы. При построении графика рекомендуется организовать выполнение работ по Т ...

Принцип работы и характеристика устройств и агрегатов
Дизельный двигатель тепловоза преобразует энергию сгорания жидкого топлива в механическую работу вращения коленчатого вала, от которого вращение через тяговую передачу получают движущие колёса. К основным узлам тепловоза относится: экипажная часть, кузов тепловоза. К вспомогательным узлам — систем ...

Выбор метода и схема технологического процесса на объекте проектирования
При уборочно-моечных работах рациональнее всего использовать поточную линию, т.к. сменная программа уборочно-моечных работ равна Nумс=332. А также при применении поточной линии увеличивается производительность данной зоны, а это необходимо при большом числе автомобилей. Технологический процесс УМ ...

Навигация

Copyright © 2019 - All Rights Reserved - www.transportpart.ru