- определение основных закономерностей влияния повреждений на прочностные свойства металла поперечин;
- построение математических моделей процесса собственных колебаний ригелей с повреждениями в нижних накладках поясов;
- экспериментальные исследования колебаний ригелей с повреждениями;
- разработка методики диагностики и технических требований к аппаратуре.
Ригели жёстких поперечин изготавливаются в заводских условиях, и уже на этой стадии создания конструкций в них закладываются технологические дефекты изготовления, влияющие на надёжность эксплуатации. В большинстве случаев эти особенности связаны с качеством сварочных работ. Наибольшее значение имеют два вида дефектов: дефекты подготовки и сборки конструкций под сварку и непосредственно сварочные дефекты швов.
К дефектам подготовки и сборки ригелей относятся неправильный выбор зазора между стыкуемыми элементами, несовпадение стыкуемых плоскостей кромок, расслоения и загрязнения на кромках.
Наличие дефектов в соединениях может отрицательно сказаться на прочности и работоспособности ригелей.
Значительное влияние на работоспособность ригелей могут оказать также повреждения, возникающие в процессе эксплуатации. Одними из наиболее распространённых повреждений являются коррозионные повреждения. Процесс коррозии металла в значительной степени зависит от относительной влажности воздуха, создающей электролит на поверхности. Наибольшая скорость коррозии наблюдается при толщине плёнки электролита в пределах 10 мкм. При увеличении и уменьшении толщины плёнки скорость коррозии уменьшается. При наличии в атмосфере пыли и газов скорость коррозии металла увеличивается. Из газов наиболее агрессивными свойствами обладает диоксид серы. Отмечено также влияние на скорость коррозии, кроме пыли и газов, пространственное положение элементов конструкции и время года.
Пространственное положение элементов конструкции сказывается на том, что в загрязненных атмосферах замкнутые поверхности коррозируют быстрее, чем открытые поверхности. В зимнее время на конструкциях накапливается значительное количество агрессивных веществ из атмосферы. Эти вещества пропитывают продукты коррозии на металле, понижают температуру замерзания электролита и способствуют интенсивной коррозии даже при низких отрицательных температурах. В целом коррозия металла приводит к появлению коррозионного износа и снижению несущей способности ригелей. Кроме того, коррозионный износ приводит к изменению деформационных и прочностных свойств металла. При коррозионном износе превышающем 25-30%, деформативность стали уменьшается более чем на 40%, что должно учитываться при назначении допустимого износа стальных элементов.
В условиях эксплуатации возможно два вида диагностирования конструкций: объективное с использованием контрольно-измерительных приборов, позволяющее получать количественную информацию и субъективное, производимое при помощи органов чувств или простейшими техническими средствами, не дающее количественной оценки технического состояния объекта. В настоящее время известно множество методов диагностики металлических конструкций. Анализ этих методов показал, что большинство из них, не может быть использовано для диагностики ригелей жёстких поперечин. Эти методы в основном пригодны для диагностики конструкций и машин, к которым имеется хороший доступ. Доступ к ригелям жёстких поперечин крайне ограничен: во-первых, они расположены на большой высоте и, во-вторых - в зоне воздействия высокого электрического напряжения от контактной сети. В этих условиях обеспечить контактную диагностику практически не представляется возможным. Исключение составляет один из методов, требующий минимального контакта с ригелем, или вообще не требующий непосредственного контакта с конструкцией, который основан на анализе собственных колебаний конструкций и известен как вибрационный метод. Для осуществления вибрационного метода диагностики требуется выбор определяющих параметров, характеризующих состояние ригелей. Частота собственных колебаний конструкции, не зависит от сил трения в конструкции и может быть использована в качестве определяющего параметра при диагностике состояния ригелей. Для оценки влияния на частоту собственных колебаний жесткой поперечины её прочностных характеристик, а так же сечение контактной подвески, необходимо провести контрольные измерения колебаний заведомо целой поперечины и ригеля с различными степенями дефектности. Накопление базы данных по колебанию каждой конкретной жесткой поперечины на перегоне и наложение полученной базы на последующие измерения этой же поперечины на протяжении нескольких контрольных измерений даст наиболее полную картину состояния поперечины и позволит спрогнозировать дефекты. То есть проводя диагностирование каждой поперечины через определенный промежуток времени, наблюдая за конструкцией в течении всего срока службы с момента установки можно строить прогнозы какой конкретно ригель и через какой промежуток времени выйдет из строя. Выявлять дефекты в поперечинах трудоемкий процесс и очень однообразный, облегчить его позволит не сложное программное обеспечение, которое будет работать с базой данных колебаний каждой опоры в отдельности, сравнивать графики колебаний опор в ретроспективе и автоматически стоить прогнозы по состоянию опоры. Схема установки датчиков и распространение волновых колебаний от колесных пар воздействующих на опоры показано на рисунках 5.1, 5.2, соответственно. Установка датчиков вид с торца вагона показаны на рисунке 5.3
Рекомендуем также:
Влияние отдельных технико-эксплуатационных показателей на
производительность автомобиля
Совокупность влияния различных технико-эксплуатационных показателей на производительность автомобиля за сутки, определяется по формуле:
1) определяем Uсут по исходным данным
2) определяем Uсут от
3) определяем Uсут от Тн
4) определяем Uсут от Vт
5) определяем Uсут от tп-р
Таблица ...
Расчёт сцепления
Сцепление – это механизм трансмиссии, передающий крутящий момент двигателя и позволяющий кратковременно отсоединять двигатель от трансмиссии и вновь их плавно соединять.
Алгоритм расчета сцепления
Расчетный момент сцепления Мс двигателя:
(1.1)
Диаметр ведомого диска:
(1.2)
где p0=0.2МПа;
...
Расчет шатунной группы
Расчет поршневой головки шатуна
Из теплового расчета:
Определим основные размеры головки шатуна:
Длина поршневой головки с плавающим пальцем:
Внутренний диаметр поршневой головки шатуна.
Без втулки:
С втулкой:
.
Наружный диаметр головки:
.
Радиальная толщина стенки головки:
Ради ...