Определение размеров поперечных сечений элементов рычажной передачи

Статьи » Проектирование тормозной схемы электровоза » Определение размеров поперечных сечений элементов рычажной передачи

Усилие на штоке поршня тормозного цилиндра определяется

Ршт = πd2тцPтц·ηтц /4 – (F1 + Lшт·Ж),(9.1)

Ршт = 19,7 кН

Определяем силы действующие на рычажную передачу

Ршт = Р1 ,

Р2 = Р1(а +б) /б = 19,7·(487 + 163)/163 = 78,6 кН(2.27)

Р3 = Р1 (а / б) = 19,7 (487 / 163) = 58,9 кН, (9.2)

Р4 = Р3 (m / 2m) = 29,45 кН(9.3)

Р5 = Р4(в + г / г) = 58,9 кН(9.4)

Р6 = Р4 = 29,45 кН(9.5)

Определив значения сил, действующих на шарнирные соединения, рассчитываем валики на изгиб.

Валики шарнирных соединений рычажной передачи рассчитываем на изгиб по формуле

σ = P1/(0,4·d3·103)·(b – a/2) < [σ] ,(9.6)

где Р – расчетная нагрузка на валик, кН;

d – диаметр валика, м. Принимаем d = 0,04 м;

b – расстояние между серединами опор, м;

а – длина поверхности передающей нагрузку, м;

[σ] – допускаемые напряжения при изгибе, МПа. Все детали тормозной рычажной передачи изготовлены из стали 5, принимаем по [1] (табл. 9.1)

[σ] = 160 МПа.

Рисунок 9.1 – Расчетная схема шарнирного соединения

b = а + 15 = 25 + 15 = 40 мм.(9.7)

σ = 57/(0,4·0,043·103)·(0,04 – 0,025/2) = 61 МПа < [σ]

Условие выполняется, прочность валика на изгиб обеспечена.

Тяги рычажной передачи рассчитываются на растяжение.

[σ] = P2·4/(π·d2т·103) < [σ], (9.8)

где Р – усилие передаваемое на тягу, кН;

dт – диаметр тяги, м. Принимаем dт = 0,022 м.

[σ] = 57·4/(3,14·0,0222·103) = 150 МПа< [σ]

Условие выполнено, прочность тяги обеспечена.

Проушины тяги рассчитываются на смятие и срез. Напряжение смятия и среза определяется по формуле

σ см = 4·Р3/(π·t·d1·103) < [σ см],(9.9)

τср = Р3/(2·t·h·103) < [τср](9.10)

где Р – усилие смятия (среза) действующее на проушину, кН;

t – толщина проушины, м;

d1 – диаметр отверстия проушины, м;

h – высота сечения проушины по линии среза, м; принимаем

h = R – d1/2(9.11)

где R – радиус наружного очертания пружины, м.

Принимаем t = 0,015 м; d1 = 0,04 м; R = 0,0375 м; [σ см] = 170МПа; [τср] = 95 МПа.

h = 0,0375 – 0,04/2 = 0,0175 м

σ см = 4·28,5/(3,14·0,015·0,04·103) = 62 МПа < [σ см],

τср = 28,5/(2·0,015·0,0175·103) = 55 МПа < [τср].

Условия выполнены, прочность проушины обеспечена.

Рычаги также рассчитываем на изгиб. Напряжения при изгибе определяются по формуле

σ изг = Ми/Wx < [σ изг],(9.12)

где Ми – изгибающий момент в сечении среднего шарнира рычага, Н·м;

Wx – момент сопротивления сечения, м3.

Рисунок 9.2 – Горизонтальный рычаг

Wx = 2·h/6·H·(H3 – d3) ,(9.13)

где Н – ширина рычага, Н = 0,18 м;

d – диаметр валика, d = 0,04 м;

h – толщина рычага, h = 0,015 м.

Wx = 2·0,015/6·0,18·(0,183 – 0,043) = 1,6·10-4 м 3.

Изгибающий момент в сечении среднего шарнира рычага определяется по формуле

Ми = Ршт·а = 57·0,251 = 14,3 кН·м, (9.14)

σ изг = 14,3/1,6·10-4 = 89 МПа < [σ изг] = 160 МПа.

Прочность рычага обеспечена.

Рассчитываем вертикальный рычаг на изгиб

Рисунок 9.3 – Вертикальный рычаг

По формуле (9.32) определяем момент сопротивления сечения

Wx = 2·0,015/6·0,16·(0,163 – 0,043) = 1,26·10-4 м3.

Находим изгибающий момент

Ми = Ршт·b = 57·0,249 = 14 кН·м ,(9.15)

σ изг = 14/1,26·10-4 = 111 МПа < [σ изг] = 160 МПа.

Прочность вертикального рычага на изгиб обеспечена.

Затяжка горизонтальных рычагов проектируется из условия ее вписывания в габаритные размеры тормозного цилиндра.

Рисунок 9.4 – Схема вписывания затяжки горизонтальных рычагов в габариты тормозного цилиндра

Зазор х, обозначенный на рисунке 9.7, находится

х = 251 – (200 + 50) = 1 мм.

Свободное вписывание затяжки обеспечено.

Так как данная затяжка выполнена без изгиба, то расчет производится только на сжатие. Напряжение при сжатии

σсж = Р1/(Н·h) ,(9.16)

где Н – ширина затяжки, м;

h – толщина затяжки, м;

Р – сила, действующая на затяжку, Н;

σсж = 57/(0,1·0,025) = 23 МПа < [σсж] = 160 МПа.

Прочность затяжки горизонтальных рычагов обеспечена.

Рекомендуем также:

Расчет кривошипной головки шатуна
Из динамического расчета и расчета поршневой головки шатуна имеем: Определим основные размеры кривошипной головки шатуна: Диаметр шатунной шейки: Толщина стенки вкладыша: Расстояние между шатунными болтами: Длина кривошипной головки Максимальная сила инерции: Момент сопротивления расч ...

Подбор и подготовка полетных карт
Для выполнения полета на борту самолета должен быть комплект подготовленных полетных и бортовых карт. Полетная карта предназначена для самолетовождения по маршруту полета, а бортовая — для определения места самолета с помощью радиотехнических и астрономических средств, для контроля пути по направл ...

Внешняя неуравновешенность и уравновешивание двигателей
Определение неуравновешенных сил и моментов от системы сил инерции поступательно-движущихся масс. Под внешней неуравновешенностью двигателя понимается наличие в нем периодических сил или моментов сил, передающихся на фундамент. Эти силы вызывают вибрацию. В СЭУ с ДВС вследствие неуравновешенности ...

Навигация

Copyright © 2019 - All Rights Reserved - www.transportpart.ru